COSMOGENIC SAMARIUM-150 AND CALCIUM-41 IN NORTON COUNTY: D. Fink¹, J. Klein², R. Middleton², A. Albrecht³, P. Ma³, G. F. Herzog³, D. D. Bogard⁴, L. E. Nyquist⁴, C.-Y. Shih⁵, Y. Reese⁶, and D. H. Garrison⁵, J. Masarik⁷, R. C. Reedy⁸, G. Rugel⁹, T. Faestermann⁹, and G. Korschinek⁹, ¹Institute for Environmental Research, ANSTO. PMB 1, Menai NSW 2234, Australia, ²Dept. of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, ³Dept. Chemistry & Chem. Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854-8087, ⁴Johnson Space Center, Houston, TX 77058, ⁵ESCG, Jacobs-Sverdrup, Houston, TX 77058, ⁶Mail Code JE-23, ESCG/Muniz Engineering, Houston, TX, 77058, ⁷Nuclear Physics Dept., Comenius University, SK-842 15 Bratislava, Slovakia, ⁸Planetary Science Institute, Los Alamos, NM 87544 USA, ⁹Fakultät für Physik, TU-München, D-85748, Garching, Germany. Introduction: Though brecciated [1], the Norton County (NC) aubrite contains little or no trapped noble gas and has been widely assumed to have a simple if unusually long cosmic ray exposure (CRE), 115 Ma [2]. One goal of this ongoing study of NC [3,4] has been to search for signs of pre-irradiation as proposed by [5] and [6]. One may test for multiple stages of CRE by comparing thermal neutron fluences inferred from ⁴¹Ca (t_{1/2}=0.1 Ma) activities, which reflect irradiation conditions over the last ~0.3 Ma, with those inferred from (stable) Sm isotope abundances, which integrate over the entire CRE history. In the case of a one-stage exposure the fluences should agree. We focus on these particular comparisons because the properties of NC - its long CRE exposure, relatively large size, and low iron concentration - all promised high production rates and ease of measurement. Previously, we reported on several cosmogenic nuclides in NC [3.4]. Here we present new ⁴¹Ca data, Sm isotope measurements, and comparisons with model calculations of cosmicray production. Experimental methods: Dr. E. Scott provided samples of Norton County from locations close to material analyzed for tracks [7] and ⁵³Mn [8]. After addition of Ca carrier, dissolution in HF/HClO₄, and fuming with HClO₄, we separated Ca by cation exchange (Dowex, 50WX8), precipitating the oxalate, and converting it to CaF₂. Accelerator mass spectrometry of ⁴¹Ca was performed at the tandem accelerator of the Technische Universität and Ludwig-Maximilians Universität, Munich [9]. All concentrations were corrected for background and normalized to a 41Ca standard prepared from the primary standards of [10]. Two procedural blanks gave ⁴¹Ca/⁴⁰Ca ratios of $(3-8\pm4)\times10^{-14}$. Ca concentrations in the samples were measured in three different ways (see Table 1, note c). Our methods for Sm analysis followed [11]. After dissolution, rare earth elements (REE) were eluted as a group in 6N HCl from a cation exchange column. Sm was separated from the other REE on a second cation column by elution with α -hydoxyisobutyric acid. Sample masses of 392, 299, and 255 mg yielded respectively 98, 75, and 64 ng of Sm for NC3C, NC102, and NC5. Sm isotopes were analyzed on a Finnigan-MAT 262 multicollector mass spectrometer in static multicollector mode. Sm blanks, ~5-10 pg, were negligible. Results: Our average measured Ca concentrations excluding NC102 range from 1.1 to 3.6 wt% (Table 1) and are systematically higher than literature values (0.5-1.2 wt%) for other samples. Norton County is known to be coarse-grained (e.g., [1]) and to contain some Ca-rich diopside [12], so sample heterogeneity can explain the differences. The Sm isotope ratios (Table 2) were measured in two ways, as Sm⁺ for all three samples and as SmO⁺ for NC102 and NC3C. The results for NC102 agree within the calculated uncertainties; those for NC3C agree within twice the calculated uncertainties. **Discussion:** We modeled production rates in aubritic meteoroids with pre-atmospheric radii greater than 40 cm by using the recently compiled cross sections of [13] and the Los Alamos High Energy Transport (LAHET) Code System (LCS) [14]. The LCS model combines the LAHET code for interactions of nucleons above 20 MeV with the Monte Carlo N-Particle (MCNP) code for interactions of low-energy neutrons. For meteoroid orbits, the LCS model uses an effective flux of primary GCR particles of 4.8 nucleons cm⁻² s⁻¹ for energies great than 10 MeV. This model is known to overestimate the lunar capture rate of thermal neutrons by ¹⁴⁹Sm. The depth profiles of ¹⁰Be, ²⁶Al [4], and ⁴¹Ca follow most closely the model predictions for a meteoroid radius of about 50 cm [4]. Differences between modeled and measured profiles at smaller depths may indicate the effects of space erosion. Bhandari et al. [7] estimated the preatmospheric mass as 3600 kg, which corresponds to a radius of 65 cm, somewhat larger than the one estimated from the depth profiles. Thermal neutron fluxes, ϕ (n cm⁻² s⁻¹) were calculated by substituting 1) the ⁴¹Ca activities, which equal production rates, $P(^{41}Ca)_n$, after small corrections for spallation of iron; 2) the Ca concentrations, **Table 1.** Neutron-produced ⁴¹Ca activities and production rates, Ca concentrations, and thermal neutron fluences. | Sample | Depth | ⁴¹ Ca | Ca | P(41Ca) _n | ¢ | Ď | |--------|-------|---------------------|-------------------|----------------------|------|------| | | (a) | (b) | (c) | (d) | (e) | (f) | | NC102 | 10 | 26.2 ^[3] | 12.3 ^g | 0.21±0.3 | 0.50 | 0.22 | | | | 21±12 | 12.3 | 0.17±0.10 | | 0.17 | | NC7 | 11 | $6.7^{[3]}$ | 1.7 ^g | 0.36 ± 0.04 | 0.55 | 0.37 | | | | 9±2 | 1.7 | 0.49±0.16 | | 0.49 | | NC6 | 12 | $9.0^{[3]}$ | 1.5 ^g | 0.58 ± 0.06 | 0.59 | 0.59 | | NC6B7 | 12 | 4.3±1.4 | 1.1 | 0.36±0.14 | | 0.37 | | NC1L | 17 | 11±4 | 1.9 | 0.57±0.20 | 0.86 | 0.58 | | NC1U | 17 | 10.5±2 | 1.6 | 0.64±0.15 | | 0.65 | | NC5 | 17 | $9.5^{[3]}$ | 1.7 ^g | 0.55±0.06 | | 0.55 | | NC3E | 25 | $16.0^{[3]}$ | 1.4 ^g | 1.15±0.12 | 1.25 | 1.17 | | | | 16±5 | 1.4 | 1.18±0.41 | | 1.20 | | NC3C | 32 | $24.6^{[3]}$ | 1.9 ^g | 1.25±0.13 | 1.44 | 1.27 | | | | 23±6 | 1.9 | 1.13±0.33 | | 1.14 | | NC3A | 33 | 46±10 | 3.6 | 1.26±0.32 | 1.59 | 1.27 | | | | 49±10 | 3.6 | 1.35±0.32 | | 1.37 | | NC23-5 | 35 | 7±4 | 1.1 | 0.58±0.36 | 1.71 | 0.59 | a) cm. b) Activities in dpm/kg corrected for spallogenic contributions from Fe. c) Averages (wt%) of 6 analyses by AA, powder XRF, and ICP-MS. d) Production rate of 41 Ca (dpm/[g Ca]) calculated from activities and Ca concentrations. Uncertainties of $P(^{41}Ca)_n$ from [3] do not include an unknown contribution from the uncertainty in the Ca concentration. e) Thermal neutron fluence (10^{16} n cm⁻²) from modeling calculations for a radius of 50 cm, a density of 3.2 g/cm³ and a CRE age of 115 Ma. f) $\Phi(n \text{ cm}^{-2}) = P(^{41}Ca)_n \times t_{\text{exp}}/(\sigma \times ^{40}Ca \text{ abundance})$; see text. g) Ca not analyzed and taken as result for another portion of the same specimen. and 3) a thermal neutron cross section, σ =410 mb, into the relation $P(^{41}Ca)_n=[^{40}Ca]\phi\sigma$. To convert fluxes, ϕ , to fluences, Φ , we multiplied by the CRE age of 115 Ma. Fluences based on the modeling calculations for ^{41}Ca generally agree with these results (Table 1). Thermal neutron fluences were also calculated from the Sm isotopic abundances using the rela- tion $$\sigma_{\text{eff}} \Phi = \left[\frac{^{150}\text{Sm}}{^{149}\text{Sm}} - \left(\frac{^{150}\text{Sm}}{^{149}\text{Sm}} \right)_{\text{terr}} \right] / \left[1 + \frac{^{150}\text{Sm}}{^{149}\text{Sm}} \right]$$ where $\sigma_{eff} = 6.1 \times 10^{-20}$ cm² was obtained following [15]. The fluences inferred from Sm are about 3×10^{-20} higher than those inferred from 41 Ca (Figure 1). The difference may indicate that up to half the 149 Sm neutron captures occurred at depths between 38 and 138 cm during earlier cosmic ray irradiation of Norton County in the parent body or a precursor meteoroid. Table 2. Sm isotopic abundances. | | $arepsilon^{149} \mathrm{Sm}$ | ε ¹⁵⁰ Sm | $\Phi^{149}\mathrm{Sm}^a$ | | | | | |---|-------------------------------|---------------------------------|---------------------------|--|--|--|--| | SmO ⁺ measurements ^b | | | | | | | | | NC102 | -11.05±0.97 | 17.88±1.36 | 1.88±0.13 | | | | | | NC5 | -8.42±0.19 | 11.94±0.39 | 1.34±0.08 | | | | | | NC3C | -18.78±0.28 | 34.27±0.39 | 3.49±0.08 | | | | | | Hidaka06 | -6.59 | 14.22 | 1.64 | | | | | | Sm ⁺ measurements | | | | | | | | | NC102 | -10.26±0.87 | 17.39±1.84 | 1.80±0.13 | | | | | | NC3C | -17.59±0.11 | 32.80±0.48 | 3.32±0.04 | | | | | | Average | | | | | | | | | NC102 | -10.66±0.97 | 17.63±1.84 | 1.84±0.09 | | | | | | NC5 | -8.42±0.19 | 11.94±0.39 | 1.34±0.08 | | | | | | NC3C | -18.18±0.84 | 33.53±1.04 | 3.41±0.04 | | | | | | a) Φ^{149} Sm $(10^{16}$ /cm ²) = ε^{149} Sm/10,000 × $\sigma_{eff}(^{149}$ Sm); | | | | | | | | | $\sigma_{\rm eff}(^{149}{\rm Sm}) = 6.1 \times 10^{-20} \text{ cm}^2 \text{ for } \Sigma_{\rm eff} = 0.0018 \text{ cm}^2/\text{g. b})$ $^{149}{\rm Sm}/^{152}{\rm Sm} = 0.516852 \pm 0.000017;$ $^{150}{\rm Sm}/^{152}{\rm Sm} =$ | | | | | | | | | 0.275983 \pm 0.000028. c) 149 Sm/ 152 Sm = 0.516837 \pm 0.000008; 150 Sm/ 152 Sm = 0.276065 \pm 0.000007. | | | | | | | | References: [1] Okada et al. (1988) Meteoritics, 23, 59-74. [2] Lorenzetti S. et al. (2003) GCA, 67, 557-571. [3] Fink D. et al. (1992) LPS, XXIII, 355-356. [4] Fink D. et al. (2002) M&PS, 37, A46. [5] Kondo T. et al. (2008) M&PS 43, A80. [6] Welten K. et al. (2004) M&PS, 39, A113. [7] Bhandari N. et al. (1980) Nucl. Tracks, 4, 213-262. [8] Englert et al. (1995) GCA, 59, 825-830. [9] Knie K. et al. (1997) NIMB, 123, 128-131. [10] Nishiizumi K. et al. (2000) NIMB, 399-403. [11] Nyquist L. E. et al. (1990) GCA, 54, 2195-2206. [12] Watters T.R. and Prinz M. (1979) PLSC 10th, 1073-1093. [13] Leya I. and Masarik J. (2009) M&PS, 44, 1061-1086. [14] Masarik J. and Reedy R. C. (1994) GCA, 58, 5307-5317. [15] Lingenfelter R. E. et al. (1972) EPSL, 16, 355-369. [16] Hidaka H. et al. (2006) GCA, 70, 3449-3456. [17] Eugster O. et al. (1970) JGR, 75, 2753-2768.